Chemotaxis
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
Diffusion model with cells endowed with chemotactic ability
Introduction
Previously developed diffusion models can be used to model chemotaxis by adding cells endowed with chemotactic ability. Here, chemotaxis of a group of cells towards a chemical diffusing into the domain with a high level at the right boundary is demonstrated, as well as in a second model, Keller-Segel cells being the sources of their own attractant.
Description
Cells are endowed with the property of Chemotaxis
with some rate $\chi$ towards a chemical $c$.
Chemotaxis of Cells towards Domain Boundary
In SimpleChemotaxis_main.xml
( | ), the chemical level is initially high (BoundaryValue
$= 5.0$) only along the right boundary of the domain. Diffusion
and a DiffEqn
for decay then result in the gradient from left to right that directs the cell motion.
Keller-Segel Chemotaxis
In KellerSegelChemotaxis.xml
( | ), the cells are sources of their own attractant, and move by chemotaxis in response to that attractant. The secreted chemical then diffuses and decays in the domain.
Results
Model
SimpleChemotaxis_main.xml
XML Preview
<?xml version='1.0' encoding='UTF-8'?>
<MorpheusModel version="4">
<Description>
<Details>Full title: Chemotaxis
Authors: L. Edelstein-Keshet
Contributors: Y. Xiao
Date: 05.06.2022
Software: Morpheus (open-source). Download from https://morpheus.gitlab.io
Model ID: https://identifiers.org/morpheus/M2010
File type: Main model
Reference: L. Edelstein-Keshet: Mathematical Models in Cell Biology
Comment: Illustration of chemotaxis for a group of cells. A chemical c in a 2D domain, diffuses at rate D and decays at rate k. Periodic BCs in y direction, constant c on x boundaries, with high level at the right boundary. Heat map in 2D of the chemical to show its diffusion into the domain: Chemotaxis plug-in implemented in Morpheus. Cells have some attraction (with chemotaxis rate chi) towards the high chemical concentration. We also keep track of the cell trajectories over time to show the net drift towards the right.</Details>
<Title>SimpleChemotaxis</Title>
</Description>
<Space>
<Lattice class="square">
<Neighborhood>
<Order>1</Order>
</Neighborhood>
<Size symbol="size" value="150, 150, 0"/>
<BoundaryConditions>
<Condition type="constant" boundary="x"/>
<Condition type="constant" boundary="-x"/>
<Condition type="periodic" boundary="y"/>
</BoundaryConditions>
<NodeLength symbol="dx" value="0.1"/>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="300"/>
<TimeSymbol symbol="time"/>
</Time>
<Global>
<Field symbol="c" name="attractant" value="0">
<Diffusion rate="0.5"/>
<BoundaryValue boundary="x" value="5.0"/>
</Field>
<System time-step="0.5" solver="Runge-Kutta [fixed, O(4)]">
<DiffEqn symbol-ref="c" name="attractant">
<Expression>-k*c</Expression>
</DiffEqn>
<Constant symbol="k" name="decay rate" value="0.001"/>
</System>
<Function symbol="x">
<Expression>dx*space.x</Expression>
</Function>
<Function symbol="y">
<Expression>dx*space.y</Expression>
</Function>
</Global>
<Analysis>
<!-- <Disabled>
<Logger time-step="5" name="chemical profile">
<Input>
<Symbol symbol-ref="c"/>
</Input>
<Output>
<TextOutput/>
</Output>
<Plots>
<Plot time-step="25" title="chemical profile">
<Style style="points"/>
<Terminal terminal="png"/>
<X-axis>
<Symbol symbol-ref="x"/>
</X-axis>
<Y-axis>
<Symbol symbol-ref="y"/>
</Y-axis>
<Color-bar>
<Symbol symbol-ref="c"/>
</Color-bar>
</Plot>
</Plots>
</Logger>
</Disabled>
-->
<Gnuplotter time-step="5">
<Plot title="chemotaxis of cells to chemical">
<Field symbol-ref="c">
<ColorMap>
<Color value="5" color="red"/>
<Color value="2" color="yellow"/>
</ColorMap>
</Field>
<Cells max="10" min="0" value="cell.id"/>
</Plot>
<Terminal name="png"/>
</Gnuplotter>
<ModelGraph format="svg" reduced="false" include-tags="#untagged"/>
<Logger time-step="1">
<Input>
<Symbol symbol-ref="cell.center.x"/>
<Symbol symbol-ref="cell.center.y"/>
</Input>
<Output>
<TextOutput/>
</Output>
<Plots>
<Plot time-step="50" title="Cell trajectories">
<Style point-size="0.5" style="points"/>
<Terminal terminal="png"/>
<X-axis minimum="0.0" maximum="150.0">
<Symbol symbol-ref="cell.center.x"/>
</X-axis>
<Y-axis minimum="0.0" maximum="150.0">
<Symbol symbol-ref="cell.center.y"/>
</Y-axis>
<Color-bar minimum="0.0" maximum="10.0">
<Symbol symbol-ref="cell.id"/>
</Color-bar>
</Plot>
</Plots>
</Logger>
</Analysis>
<CellTypes>
<CellType class="biological" name="neutrophil">
<Chemotaxis strength="chi" field="c
"/>
<Constant symbol="chi" name="chemotactic coefficient" value="1.0"/>
<VolumeConstraint target="50" strength="1"/>
<ConnectivityConstraint/>
</CellType>
<CellType class="medium" name="medium"/>
</CellTypes>
<CPM>
<Interaction>
<Contact type1="neutrophil" type2="neutrophil" value="8"/>
<Contact type1="neutrophil" type2="medium" value="4"/>
<!-- <Disabled>
<Contact type1="medium" type2="medium" value="0"/>
</Disabled>
-->
</Interaction>
<ShapeSurface scaling="norm">
<Neighborhood>
<Order>4</Order>
</Neighborhood>
</ShapeSurface>
<MonteCarloSampler stepper="edgelist">
<MCSDuration value="0.00375"/>
<MetropolisKinetics yield="0.1" temperature="2"/>
<Neighborhood>
<Order>2</Order>
</Neighborhood>
</MonteCarloSampler>
</CPM>
<CellPopulations>
<Population type="neutrophil" size="1">
<InitCircle number-of-cells="10" mode="random">
<Dimensions radius="size.x/10" center="size.x/10, size.y/2, 0.0"/>
</InitCircle>
</Population>
</CellPopulations>
</MorpheusModel>
Downloads
Files associated with this model: